

Mr John Coles Bury Hill Landscape Supplies Ltd The Estate Office Old Bury Hill Westcott Nr Dorking Surrey, RH4 3JU

> 1<sup>st</sup> February 2024 Our Ref: TOHA/24/1219/3/SS Your Ref: see below

Dear Sirs

# Sand Analysis Report: Bury Hill Horsham Yard – Medium Washed Sand (R)

We have completed the analysis of the sand sample recently submitted, referenced *Medium Washed Sand (R)* and have pleasure reporting our findings.

The purpose of the analysis was to assess selected physical and chemical properties of the sand in order to determine its potential for use in a range of landscape applications. The ultimate suitability of the sand for any use case should be reviewed and assessed prior to use, however this report indicates some possible cases where the sand may be appropriate.

This report presents the results of analysis for the sample submitted to our office, and it should be considered 'indicative' of the sand source. The report and results should therefore not be relied upon by any third parties.

# SAMPLE EXAMINATION

The sample can be described as a pale yellow (Munsell Colour, 2.5YR 7/4), slightly moist, friable, non-calcareous SAND with a single grained structure. The sample was stone free and no unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

Tim O'Hare Associates LLP Howbery Park Wallingford Oxfordshire OX10 8BA T:01491 822653 E:info@toha.co.uk www.toha.co.uk



Plate 1: Medium Washed Sand (R) Sample

# ANALYTICAL SCHEDULE

The sample was submitted to a UKAS and MCERTS accredited laboratory for a range of physical and chemical tests to confirm the composition of the soil. The following parameters were determined:

- detailed particle size analysis (5 sands, silt, clay);
- stone content (2-20mm, 20-75mm, >75mm);
- saturated hydraulic conductivity;
- pH and electrical conductivity (1:2.5 water extract);
- exchangeable sodium percentage
- calcium carbonate.
- organic matter content;
- visible contaminants;
- heavy metals (Sb, As, B, Ba, Be, Cd, Cr, Cu, Pb, Hg, Ni, Se, V, Zn);
- total cyanide and total (mono) phenols;
- speciated PAHs (US EPA16 suite);
- aromatic and aliphatic TPH (C5-C35 banding);
- benzene, toluene, ethylbenzene, xylene (BTEX);
- asbestos screen.

The results are presented on the attached Certificate of Analysis and an interpretation of the results is given below.

# RESULTS OF ANALYSIS

## Particle Size Analysis and Stone Content

The sample had a total sand content of 100%. Further detailed particle size analysis revealed the sample to contain a predominance of *medium sand* (0.25-0.50mm) and lower proportions of *fine sand* (0.15-0.25mm) and *coarse sand* (0.5-1.0mm).

If used as a subsoil for landscaping applications, it could be described as 'very free-draining' based on the high saturated hydraulic conductivity result (866mm/hr).

The sample was stone-free and, as such, stones will not restrict the use of the sand for landscape applications.

## pH and Electrical Conductivity Values

The sample was alkaline in reaction (pH 7.9), with a low calcium carbonate (lime) content. This pH value should not restrict the use of the sand for most landscape purposes.

The electrical conductivity (salinity) values (water and CaSO<sub>4</sub> extract) were low, which indicates that soluble salts were not present at elevated levels.

# **Organic Matter Content**

The organic matter content of the sand was very low (<0.5%).

## **Potential Contaminants**

In the absence of site-specific assessment criteria, the concentrations of selected potential contaminants that affect human health have been assessed for the concentrations that affect human health have been assessed for *residential* end-use against the Suitable For Use Levels (S4ULs) presented in the LQM/CIEH S4ULs for Human Health Risk Assessment (2015) and the DEFRA SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document (2014).

Of the potential contaminants determined, none exceeded their respective guideline values.

## Phytotoxic Contaminants

Of the phytotoxic (toxic to plants) contaminants determined (copper, nickel, zinc), none was found at levels that exceeded the maximum recommended levels.

## COMMENTS

The sand represented by this sample has the following properties:

- Narrow particle size distribution
- Very low fines content
- High drainage rate
- Alkaline pH value and low lime content
- Non-saline
- Inorganic

Based on these characteristics, the sand represented by this sample may have potential for use in a number of landscape applications where a very free-draining sand is required, examples of which could include:

- A very free-draining, compaction resistant alkaline sand for landscape environments where a higher level of permeability and porosity in the subsoil layer is required, e.g. when planting larger rootballed trees, for podium landscapes, or formal / high-use grass lawns;
- 2) For use as a filter medium for bioretention systems and rain gardens that may be included within Sustainable Drainage Systems (SuDS).
- 3) For use as a surface ameliorant / topdressing to improve amenity grass / sports pitch surfaces;
- 4) For use in sports pitch drainage where a free-draining sand may be required (e.g. sand grooves);
- 5) For blending with suitable ameliorants to produce high-permeability rootzones;

The suitability of this sand for any specific project or product should be carefully checked by further testing as necessary and should be approved by any project's designer / manager before use.

We hope this report meets with your approval and provides the necessary information. Please do not hesitate to contact the undersigned if we can be of further assistance.

/

Yours faithfully

H.MacKae

Harriet MacRae MSc BSc Graduate Soil Scientist

Matthew Heins BSc (Hons) MISoilSci Senior Soil Scientist

2502 For & on behalf of Tim O'Hare Associates LLP



| Client:                                             | Bury Hill Landscape Supplies Ltd        |                | ]                |  |
|-----------------------------------------------------|-----------------------------------------|----------------|------------------|--|
| Project                                             | Bury Hill Horsham Yard                  |                |                  |  |
|                                                     | Sand Analysis                           |                |                  |  |
|                                                     | 01/02/2024<br>TOHA/24/1219/3/SS         |                |                  |  |
| JUD KEI NU.                                         | 1014/24/1219/3/33                       |                |                  |  |
| Sample Referer                                      | ice                                     |                |                  |  |
| 01                                                  | <u>,</u>                                | 0/             | Accreditation    |  |
| Clay (<0.002mm                                      |                                         | %              | UKAS<br>UKAS     |  |
| Silt (0.002-0.05mm)<br>Very Fine Sand (0.05-0.15mm) |                                         | %              | UKAS             |  |
| Fine Sand (0.15-0.25mm)                             |                                         | %              | UKAS             |  |
| Medium Sand (0.25-0.50mm)                           |                                         | %              | UKAS             |  |
| Coarse Sand (0.50-1.0mm)                            |                                         | %              | UKAS             |  |
| Very Coarse Sand (1.0-2.0mm)                        |                                         | %              | UKAS             |  |
| Total Sand (0.05                                    | -2mm)                                   | %              | UKAS             |  |
| Texture Class (UK Classification)                   |                                         | -              | UKAS             |  |
| Stones (2-25mm)                                     |                                         | % DW           | GLP              |  |
| Stones (>25 - 75mm)                                 |                                         | % DW           | GLP              |  |
| Stones (>75mm)                                      |                                         | % DW           | GLP              |  |
| Potrate d Lludeo                                    | die Caaduatiuit.                        | ana ana Ana a  | A 21 A           |  |
| Saturated Hydra                                     | ulic Conductivity                       | mm/hr          | A2LA             |  |
| H Value (1:2.5                                      |                                         | units          | MCERTS           |  |
| Calcium Carbon                                      |                                         | %<br>uS/cm     | UKAS             |  |
|                                                     | ctivity (1:2.5 water extract)           | uS/cm          | UKAS             |  |
| Drganic Matter (                                    | ctivity (1:2 CaSO <sub>4</sub> extract) | uS/cm          | UKAS<br>UKAS     |  |
|                                                     | odium Percentage                        | %              | UKAS             |  |
| -xonangeable 3                                      | caranti oroontage                       | /0             | 01/10            |  |
| Visible Contamir                                    | ants: Plastics >2.00mm                  | %              | UKAS             |  |
|                                                     | ants: Sharps >2.00mm                    | %              | UKAS             |  |
|                                                     |                                         |                |                  |  |
| Total Antimony (                                    | Sb)                                     | mg/kg          | MCERTS           |  |
| Total Arsenic (As                                   |                                         | mg/kg          | MCERTS           |  |
| Total Barium (Ba                                    |                                         | mg/kg          | MCERTS           |  |
| Total Beryllium (Be)                                |                                         | mg/kg          | MCERTS           |  |
| Fotal Cadmium (                                     |                                         | mg/kg          | MCERTS           |  |
| Fotal Chromium                                      | (Cr)                                    | mg/kg          | MCERTS           |  |
| Hexavalent Chro                                     | mium (Cr VI)                            | mg/kg          | MCERTS           |  |
| Total Copper (Cu                                    | J) (I                                   | mg/kg          | MCERTS           |  |
| Total Lead (Pb)                                     |                                         | mg/kg          | MCERTS           |  |
| Total Mercury (H                                    | g)                                      | mg/kg          | MCERTS           |  |
| Total Nickel (Ni)                                   |                                         | mg/kg          | MCERTS           |  |
| Total Selenium (                                    |                                         | mg/kg          | MCERTS           |  |
| Total Vanadium                                      | (V)                                     | mg/kg          | MCERTS           |  |
| Total Zinc (Zn)                                     |                                         | mg/kg          | MCERTS           |  |
| Water Soluble B                                     |                                         | mg/kg          | MCERTS           |  |
| Total Cyanide (C                                    |                                         | mg/kg          | MCERTS           |  |
| Total (mono) Phe                                    | enols                                   | mg/kg          | MCERTS           |  |
|                                                     |                                         | an a fline     | MOEDTO           |  |
| Naphthalene                                         |                                         | mg/kg          | MCERTS           |  |
| Acenaphthylene                                      |                                         | mg/kg          | MCERTS           |  |
| Acenaphthene<br>Fluorene                            |                                         | mg/kg          | MCERTS<br>MCERTS |  |
| Phenanthrene                                        |                                         | mg/kg<br>mg/kg | MCERTS           |  |
| Anthracene                                          |                                         | mg/kg          | MCERTS           |  |
| Fluoranthene                                        |                                         | mg/kg          | MCERTS           |  |
| Pyrene                                              |                                         | mg/kg          | MCERTS           |  |
| Benz(a)anthrace                                     | ne                                      | mg/kg          | MCERTS           |  |
| Chrysene                                            |                                         | mg/kg          | MCERTS           |  |
| Benzo(b)fluorant                                    | hene                                    | mg/kg          | MCERTS           |  |
| Benzo(k)fluorant                                    |                                         | mg/kg          | MCERTS           |  |
| Benzo(a)pyrene                                      |                                         | mg/kg          | MCERTS           |  |
| ndeno(1,2,3-cd)                                     | pyrene                                  | mg/kg          | MCERTS           |  |
| Dibenzo(a,h)anth                                    |                                         | mg/kg          | MCERTS           |  |
| Benzo(g,h,i)pery                                    |                                         | mg/kg          | MCERTS           |  |
| Total PAHs (sum                                     |                                         | mg/kg          | MCERTS           |  |
|                                                     |                                         |                |                  |  |
| Aliphatic TPH >C                                    |                                         | mg/kg          | MCERTS           |  |
| Aliphatic TPH >0                                    |                                         | mg/kg          | MCERTS           |  |
| Aliphatic TPH >C8 - C10                             |                                         | mg/kg          | MCERTS           |  |
| Aliphatic TPH >C10 - C12                            |                                         | mg/kg          | MCERTS           |  |
| Aliphatic TPH >C12 - C16                            |                                         | mg/kg          | MCERTS           |  |
| Aliphatic TPH >0                                    |                                         | mg/kg          | MCERTS           |  |
| Aliphatic TPH >C                                    |                                         | mg/kg          | MCERTS           |  |
| Aliphatic TPH (C                                    |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH >0                                     |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH >0                                     |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH >C8 - C10                              |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH >C10 - C12                             |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH >                                      |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH >0                                     |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH >0                                     |                                         | mg/kg          | MCERTS           |  |
| Aromatic TPH (C                                     | 5 - C35)                                | mg/kg          | MCERTS           |  |
| Benzene                                             |                                         | ma/ka          | MCERTS           |  |
| JUITELLE                                            |                                         | mg/kg<br>mg/kg |                  |  |
| Foluono                                             | Toluene                                 |                | MCERTS           |  |
|                                                     |                                         |                |                  |  |
| Ethylbenzene                                        |                                         | mg/kg          | MCERTS           |  |
| Ethylbenzene                                        |                                         | mg/kg          | MCERTS           |  |
| Ethylbenzene<br>& m-xylene<br>-xylene               | ntion/ Public Ethor)                    | mg/kg<br>mg/kg | MCERTS<br>MCERTS |  |
| thylbenzene<br>& m-xylene<br>-xylene                | ertiary Butyl Ether)                    | mg/kg          | MCERTS           |  |
| Ethylbenzene<br>& m-xylene<br>-xylene               | ertiary Butyl Ether)                    | mg/kg<br>mg/kg | MCERTS<br>MCERTS |  |

| Medium<br>Washed Sand<br>(R) |  |
|------------------------------|--|
|                              |  |
| 0                            |  |
| 0                            |  |
| 3                            |  |
| 22                           |  |
| 49                           |  |
| 24                           |  |
| 24<br>2                      |  |
| 100                          |  |
| S                            |  |
| 0                            |  |
| 0                            |  |
| 0                            |  |
| 0                            |  |
| 866                          |  |
| 7.9                          |  |
| <1.0                         |  |
| 34                           |  |
| 34                           |  |
| 2087                         |  |
| <0.5                         |  |
| 5.9                          |  |
|                              |  |
| 0                            |  |
| 0                            |  |
|                              |  |
| < 1.0                        |  |
| 2.6<br>< 1.0                 |  |
| < 1.0                        |  |
| 0.06                         |  |
| < 0.2                        |  |
| 3                            |  |
| < 1.8                        |  |
| 3.9                          |  |
| < 1.0                        |  |
| < 0.3                        |  |
| 1                            |  |
| < 1.0                        |  |
| 5.5                          |  |
| 3.2                          |  |
| 3.2<br>< 0.2                 |  |
| < 1.0                        |  |
| < 1.0                        |  |
| < 1.0                        |  |
| 0.05                         |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| 0.05                         |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |
| < 0.05                       |  |

< 0.80 < 0.020 < 0.020 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.010 < 0.010 < 0.050 < 1.0 < 2.0 < 10 < 10 < 10 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Not-detected ppilesto

S = SAND

Visual Examination The sample can be described as a pale yellow (Munsell Colour, 2.5YR 7/4), slightly moist, friable, non-calcareous SAND with a single grained structure. The sample was stone free and no unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

Results of analysis should be read in conjunction with the report they were issued with.

The contents of this certificate shall not be reproduced without the express written permission of Tim O'Hare Associates LLP

H.MacRae

Harriet MacRae MSc BSc Graduate Soil Scientist